Electromagnetic scattering on fractional Brownian surfaces and estimation of the Hurst exponent

نویسندگان

  • Charles-Antoine Guérin
  • Marc Saillard
چکیده

Fractional Brownian motion is known to be a realistic model for many natural rough surfaces. It is defined by means of a single parameter, the Hurst exponent, which determines the fractal characteristics of the surface. We propose a method to estimate the Hurst exponent of a fractional Brownian profile from the electromagnetic scattering data. The method is developed in the framework of three usual approximations, with different domains of validity: the Kirchhoff approximation, the small-slope approximation of Voronovitch and the smallperturbation method. A universal power-law dependence upon the incident wavenumber is shown to hold for the scattered far-field intensity, irrespective of the considered approximation and the polarization, with a common scaling exponent trivially related to the Hurst exponent. This leads naturally to an estimator of the latter based on a log–log regression of the far-field intensity at fixed scattering angle. We discuss the performance of this estimator and propose an improved version by allowing the scattering angle to vary. The theoretical performance of these estimators is then checked by numerical simulations. Finally, we present a rigorous numerical computation of the scattered intensity in the resonance domain, where none of the aforementioned approximations applies. The numerical results show the persistence of a power-law behaviour, but with a different and still non-trivial exponent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hurst parameter estimation on fractional Brownian motion and its application to the development of the zebrafish

In order to distinguish different morphogenic fields automatically, fractional Brownian motion is used in this paper and the Hurst parameter is used as an important measure to distinguish different morphogenic fields in embryo of zebra fish.

متن کامل

Estimation of the drift of fractional Brownian motion

We consider the problem of efficient estimation for the drift of fractional Brownian motion B := ( B t ) t∈[0,T ] with hurst parameter H less than 1 2 . We also construct superefficient James-Stein type estimators which dominate, under the usual quadratic risk, the natural maximum likelihood estimator.

متن کامل

On Comparison of the Estimators of the Hurst Index of the Solutions of Stochastic Differential Equations Driven by the Fractional Brownian Motion

This paper presents a study of the Hurst index estimation in the case of fractional Ornstein–Uhlenbeck and geometric Brownian motion models. The performance of the estimators is studied both with respect to the value of the Hurst index and the length of sample paths.

متن کامل

Bayesian estimation of self-similarity exponent

In this study we propose a bayesian approach to the estimation of the Hurst exponent in terms of linear mixed models. Even for unevenly sampled signals and signals with gaps, our method is applicable. We test our method by using artificial fractional brownian motion of different length and compare it with the detrended fluctuation analysis technique. The estimation of the Hurst exponent of a Ro...

متن کامل

Parameter Estimation for Spdes with Multiplicative Fractional Noise

We study parameter estimation problem for diagonalizable stochastic partial differential equations driven by a multiplicative fractional noise with any Hurst parameter H ∈ (0, 1). Two classes of estimators are investigated: traditional maximum likelihood type estimators, and a new class called closed-form exact estimators. Finally the general results are applied to stochastic heat equation driv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017